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Abstract. We consider quantum systems with a chaotic classical limit that are perturbed by a
point-like scatterer. The spectral form factor K(τ) for these systems is evaluated semiclassically
in terms of periodic and diffractive orbits. It is shown for order τ 2 and τ 3 that off-diagonal
contributions to the form factor which involve diffractive orbits cancel exactly the diagonal
contributions from diffractive orbits, implying that the perturbation by the scatterer does not change
the spectral statistic. We further show that parametric spectral statistics for these systems are
universal for small changes of the strength of the scatterer.

1. Introduction

Semiclassical theories for spectral statistics have been developed [1–3] to find an explanation
for the observed universality in energy spectra of quantum systems with a chaotic classical
limit, i.e. the agreement of correlations in energy spectra with those between eigenvalues of
random matrices [4]. They are based on semiclassical trace formulae that approximate the
density of states in terms of classical trajectories [5]. It has been shown by these theories that
in the asymptotic limit of long-range correlations two-point correlation functions do coincide
with those of random matrix theory [2, 3]. These results are based on mean properties of
periodic orbits [1]. To go beyond the leading asymptotic term requires information concerning
correlations between periodic orbits that is presently not available [6].

One of the expectations, on the basis of the random matrix hypothesis [7], is that a
perturbation of a chaotic system should not change the statistical distribution of the energy
levels of the quantum system, if it does not change the chaotic nature of the classical motion.
In this paper we investigate, at the level of the semiclassical approximation, whether the
perturbation by a point-like scatterer has this property. One argument in favour of this
invariance is that the semiclassical approximation for the density of states is not changed
in leading order of h̄ for this perturbation. The influence of the scatterer is described
semiclassically by a certain class of trajectories, so-called diffractive orbits that start from
the scatterer and return to it. They contribute to the density of states in higher order of h̄ than
the leading-order contribution from periodic orbits.

This paper is motivated by the observation in [8] that a scatterer could nevertheless have
an influence on the spectral statistics. When spectral correlation functions are calculated by
using mean properties of diffractive orbits, the so-called diagonal approximation, they show
modifications which, in general, do not vanish in the semiclassical limit (h̄ → 0). In order
that this does not lead to deviations from random matrix statistics, these terms have to be
cancelled by off-diagonal terms which contain information concerning correlations between
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different trajectories. As remarked above, the calculation of correlations between trajectories
is an unsolved problem in general systems. For the diffractive orbits that describe the influence
of a scatterer, however, off-diagonal terms can be calculated explicitly. This is done in the
following sections. The results show that diagonal and off-diagonal terms do indeed cancel each
other. Furthermore, the results can be used to investigate parametric spectral correlations, i.e.
correlations between spectra of the system for different parameter values, where the parameter
is the strength of the scatterer. It is shown that the parametric spectral correlations are universal
for small changes of the parameter.

2. The spectral form factor

The perturbation by a point-like scatterer is represented, formally, by a delta-potential
Ĥ = Ĥ0 +λδ(r−r0), where λ and r0 are the strength and position of the scatterer, respectively.
In more than one dimension such a delta-potential is, however, not well defined. For example,
it leads to a divergent expression for the Green function. The problem can be regularized by
the method of self-adjoint extensions, leading to a one-parameter family of Hamiltonians. A
detailed monograph with references on the history and on applications of delta-like potentials
is [9]. We use in the following the property that the semiclassical approximation for the density
of states has the same form as in the geometrical theory of diffraction [10–13] (see also [14, 15]
for applications on spectral statistics).

We consider chaotic systems whose Hamiltonian is given in terms of a scalar and a vector
potential. Billiard systems can be included in this description by letting the scalar potential be
infinite outside the billiard region. The statistical distribution of the energy levels is investigated
by semiclassically approximating the spectral form factor. We restrict to two-dimensional
systems in order to keep the notation simple, but analogous calculations can be performed in
higher dimensions.

The spectral form factor is defined as Fourier transform of the spectral two-point correlation
function

K(τ) =
∫ ∞

−∞

dη

d̄(E)

〈
dosc

(
E +

η

2

)
dosc

(
E − η

2

)〉
E

exp
(
2π iητ d̄(E)

)
. (1)

The function dosc(E) = d(E)− d̄(E) is the oscillatory part of the density of states, and d̄(E)

is the smooth part which is given in two dimensions by d̄(E) ∼ �(E)(2πh̄)−2, E → ∞,
where �(E) is the volume of the surface of constant energy in phase space. The statistics is
evaluated by averaging over an energy interval that is small in comparison to E but contains a
large number of energy levels.

The semiclassical approximation for K(τ) is obtained by inserting into (1) the
approximation for the oscillatory part of the density of states

dosc(E) ≈ 1

πh̄
Re
∑
γ

Aγ exp

(
i

h̄
Sγ (E)

)
. (2)

In systems with a delta-like potential the sum in (2) runs over all periodic orbits [5], and further
over all diffractive orbits that start from the scatterer and return to it an arbitrary number of
times n [10–13]. An example of a double-diffractive orbit (n = 2) in a billiard system is shown
in figure 1. For n-fold diffractive orbits the amplitude Aγ has an h̄ dependence of h̄n/2, and Sγ
denotes the action of an orbit.

With (2) one obtains the following approximation for the spectral form factor:

K(τ) = 1

2πh̄d̄(E)

〈∑
γ,γ ′

AγA
∗
γ ′ exp

{
i

h̄

(
Sγ (E) − Sγ ′(E)

)}
δ

(
T − Tγ + Tγ ′

2

) 〉
E

(3)
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Figure 1. Example of a double-diffractive orbit.

where T = 2πh̄d̄(E)τ , and Tγ is the period of an orbit. For small values of τ one can evaluate
the double sum in (3) in the diagonal approximation [2]. In this way one obtains from the
periodic orbits the correct random matrix result K(τ) ∼ 2

β
τ , τ → 0, where β = 1 or 2 for

systems with or without time-reversal symmetry, respectively.
The diagonal contributions from diffractive orbits to the form factor have been calculated

in [8]. The result for n-fold diffractive orbits is

K
(n)
d (τ ) = |D|2n

(2β)n
τn+1

n
(4)

where D is the diffraction coefficient for the diffraction on the singularity of the potential
[9, 16]. It can be parametrized in the following form:

D = 2π

iπ/2 − γ − log (ka/2)
. (5)

Here k = √
2 m(E − V (r0))/h̄, r0 is the position of the scatterer, a is a parameter describing

the strength of the potential and γ is Euler’s constant. In order for the terms (4) to not lead
to a deviation from random matrix statistics they have to be cancelled by off-diagonal terms
involving diffractive orbits. By calculating off-diagonal terms for order τ 2 and τ 3 we show in
the following that such a cancellation does indeed occur.

We note that the diffraction coefficient satisfies the identities

|D|2 = −4 Im D |D|4 = 8(|D|2 − Re D2) (6)

that will be used in the following. The first of these relations expresses the conservation of
probability and the second is a consequence of the first one.

3. First-order correction

The first-order correction to the diagonal approximation for the form factor arises from off-
diagonal terms in (3) between periodic orbits and single-diffractive orbits. In leading order,
these orbits are only correlated if the diffractive orbit follows the periodic orbit very closely.
This happens, if the diffractive orbit is almost periodic, i.e. if the final momentum is almost
identical to the initial momentum. An example is shown in figure 2.

The periodic orbit can be described by linearizing the motion around the diffractive orbit.
The condition that a trajectory in the vicinity of the diffractive orbit is periodic leads to the
following equation:(

δ

pvγ

)
= M

(
δ

pv(γ − ε)

)
. (7)
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Figure 2. A diffractive orbit (full curve) that is almost
periodic and a nearby periodic orbit (broken curve).
The local coordinate system is oriented along the final
direction of the diffractive orbit.

Here M is the stability matrix of the diffractive orbit, ε is the angle between the initial and final
direction of the diffractive orbit, γ is the angle between the direction along the periodic orbit
and the final direction of the diffractive orbit, and δ is the spacial distance between periodic and
diffractive orbit (see figure 2). The quantity pv is defined as mass times velocity, pv = mv.
The index v is used in order to distinguish it from the canonical momentum p in systems with
a magnetic field. The stability matrix for the motion in a magnetic field is discussed in the
appendix.

In the linear approximation the difference in actions is obtained by expanding the action
up to second order

�S(E) = Spo(E) − S1do(E) ≈ −pvδε + 1
2 (�pf − �pi)δ = − 1

2δεpv (8)

where �pf and �pi are the differences between the initial and final momenta of the periodic
orbit and the diffractive orbit, respectively. The solution of the linear equation (7) yields the
following relation between δ and ε:

δ = M12

Tr M − 2
εpv (9)

so that �S(E) depends quadratically on ε.
With this approximation the off-diagonal terms are calculated. The amplitude of the

diffractive orbit is given by

A1do
γ = TγD

4πpv

√
2πh̄

|(Mγ )12| exp

{
−i

π

2
νγ − i

3π

4

}
(10)

where Tγ is the time along the orbit,Mγ is its stability matrix, and νγ is the number of conjugate
points along the orbit. For the periodic orbit the corresponding amplitude is

Apo
γ = Tγ√| Tr Mγ − 2| exp

{−i 1
2πµγ

}
. (11)

The stability matrix is the same for both orbits in leading order, but the Maslov index of the
periodic orbit can differ from the number of conjugate points νγ by 1 [5]

µγ = νγ + 1
2 (1 − κγ ) κγ = sign

(
(Mγ )12

Tr Mγ − 2

)
. (12)

In the following we sum over all diffractive orbits that are almost periodic. This is done
by first applying the sum rule for diffractive orbits for which the angle difference between the



Spectral statistics in chaotic systems with a point interaction 6267

initial and the final direction has a fixed value ε, and then integrating over the angle ε. The
sum rule is given by [8]

∑
γ

(ε) 1

|(Mγ )12|δ(T − Tγ ) ≈ 2πp2
v

�(E)
(13)

where �(E) is the volume of the energy shell. (It is implied in (13) that the left-hand side is
smoothed over small intervals of T and ε in order to obtain a non-singular expression.)

Finally, one has to determine the multiplicity factor of the contribution. First, each off-
diagonal term in (3) has a corresponding complex conjugate partner. If the summation is
carried out over only one of these terms one has to take twice the real part of the sum.
Furthermore, the periodic orbit and the diffractive orbit both have multiplicities 2β−1, but
a particular constellation occurs 2β−1 times in the sum over ε (for systems with time-reversal
symmetry for ε and −ε), so the total multiplicity is g = 2β−1.

Inserting the amplitudes (10) and (11), and the action difference (8) with (9) into (3) we
obtain

K
(1)
off (τ ) = g

2πh̄d̄(E)
2 Re

∫ ∞

−∞
dε
∑
γ

(ε)
A1do
γ (Apo

γ )
∗ exp

(
− i

h̄
�Sγ (E)

)
δ(T − Tγ )

= 4

2πh̄d̄(E)β
Re
∫ ∞

−∞
dε
∑
γ

(ε) T 2
γ D

√
2πh̄δ(T − Tγ )

4πpv

√|(Mγ )12(Tr Mγ − 2)|

× exp

{
iε2p2

v

2h̄

(Mγ )12

Tr Mγ − 2
− i

π

4
(2 + κγ )

}

= 4

2πh̄d̄(E)β
Re
∫ ∞

−∞
dε′∑

γ

(ε′) T
2
γ D

√
2πh̄δ(T − Tγ )

4πpv|(Mγ )12| exp

[
−ε′2p2

v

2h̄
− i

π

2

]

= 2T 2

2πh̄d̄(E)β
Im
∫ ∞

−∞
dε′ Dpv

√
2πh̄

�(E)
exp

[
−ε′2p2

v

2h̄

]

= 2τ 2

β
Im D. (14)

The integration over ε can be carried out from minus to plus infinity since the main contribution
comes from the vicinity of ε = 0. Furthermore, the following steps have been carried out. First
the integration variable has been changed to make the exponent independent of the stability
matrix. Then the sum rule (13) has been applied, assuming that the distribution of angles
between initial and final momenta of a diffractive orbit is independent of the distribution of
the elements of the stability matrix

∑
γ

(ε) 1

|(Mγ )12|δ(T − Tγ ) ≈
∑
γ

(ε′) 1

|(Mγ )12|δ(T − Tγ ) ε′ = ε

√
−i(Mγ )12

Tr Mγ − 2
(15)

and finally the integration has been carried out.
K

(1)
off (τ ) is the leading-order correction to the diagonal approximation for the form factor

and it cancels exactly the diagonal contribution from single-diffractive orbits ((4) with n = 1).
This can be seen by using (6)

K
(1)
d (τ ) + K

(1)
off (τ ) = |D|2

2β
τ 2 +

2

β
τ 2 Im D = 0. (16)
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It shows that the presence of a point-like scatterer does not modify the spectral form factor up
to order τ 2 in systems with a chaotic classical limit.

In order to find the geometries of orbits which contribute to a given order in τ it is helpful
to count the orders of h̄. Themth-order off-diagonal correction to the form factor is a τm+1 term
with a coefficient that has to be h̄-independent. The prefactor of the double sum over orbits in
(3) is of order h̄−1 and the product of the amplitudes of an n1-fold and an n2-fold diffractive
orbit is of order h̄−(n1+n2)/2, where periodic orbits are denoted here as 0-fold diffractive orbits.
The conversion of time T m+1 into τm+1 gives an order h̄m+1, which yields altogether an order
of h̄(2m−n1−n2)/2. Furthermore, every integration over a small parameter ε gives an additional
order h̄−1/2, if the action difference is quadratic in this parameter. Consequently, 2m−n1 −n2

small parameters are necessary in order for the prefactor of τ (m+1) to be h̄-independent. For
the first-order correction in this section (m = n1 = 1 and n2 = 0) this estimate gives one small
parameter ε.

4. Second-order corrections

For the second-order corrections we consider orbits that return twice to the region in coordinate
space from which they started. These orbits are close to double-diffractive orbits. Double-
diffractive orbits have the semiclassical amplitude

A2do
γ = h̄TγD2

16πp2
v

1√|(Rγ )12(Lγ )12|
exp

{
−i

π

2
(νγ,L + νγ,R) − i

3π

2

}
(17)

where Tγ is the total time along the trajectory, Lγ and Rγ are the stability matrices for the two
loops (‘left’ and ‘right’), and νγ,L and νγ,R are the number of conjugate points along the loops.
Equation (17) is the amplitude for one particular sequence in which the loops are traversed. In
systems without time-reversal symmetry the degeneracy of the trajectory is thus two, meaning
that there is another trajectory with exactly the same semiclassical amplitude and action. This
trajectory traverses first the second loop of γ , and then the first loop of γ . In systems with
time-reversal symmetry the degeneracy is eight.

The sum rule for double-diffractive orbits is given by [8]

(ε1,...,εn)∑
γ

1

|(Rγ )12(Lγ )12|δ(T − Tγ ) ≈ (2πpv)
4

�(E)2

T

(2π)n
(18)

if there are n restrictions to the four directions of the velocities at the point from which the
trajectories start and to which they return. As will be seen in the following, it follows from
this sum rule that the contributions are of order τ 3 (there is a factor T from every semiclassical
amplitude, and a factor T from the sum rule).

There are several possibilities in which a double-diffractive orbit can have an action which
is almost identical to the action of a single-diffractive or a periodic orbit. A necessary condition
is that there is always at least one small relative angle between the different initial and final
directions of the orbit at the scattering point. In order to find the relevant cases one has to
consider all possibilities and take into account the h̄-argument that was given at the end of
section 3. The result is that there are three relevant configurations for systems without time-
reversal symmetry and five configurations for systems with time-reversal symmetry. They are
discussed in the next sections.
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Figure 3. A double-diffractive orbit (full curve) for
which one initial direction deviates by a small angle ε

from one final direction, and a nearby single-diffractive
orbit (broken curve).

4.1. Correlations between double-diffractive and single-diffractive orbits

Correlations between double- and single-diffractive orbits exist if the double-diffractive orbit
is almost single-diffractive. This occurs if the final velocity of one loop deviates by a small
angle ε from the initial velocity of the other loop. An example is shown in figure 3. There is
only one small parameter here which agrees with the estimate 2m−n1 −n2 for m = 2, n1 = 2
and n2 = 1.

Further calculations are done analogously to the previous section. The motion in the
vicinity of the double-diffractive orbit is linearized and one obtains in this approximation a
condition for the neighbouring single-diffractive orbit(

δ

pvγ2

)
= L

(
0

pvγ1

) (
0

pvγ3

)
= R

(
δ

pv(γ2 − ε)

)
. (19)

The angles γ1, γ2, γ3 and the distance δ are shown in figure 3. The difference in action is
obtained by expanding the action up to second order

�S(E) = S1do(E) − S2do(E) = − 1
2δεpv = −ε2p2

v

2

L12R12

M12
(20)

where M = RL is the stability matrix of the single-diffractive orbit. The last step in (20)
follows from the solution of (19) for δ.

The number of conjugate points νγ along the single-diffractive orbit can differ from the
sum of the number of conjugate points along the two loops, νγ,L and νγ,R , by 1. The general
condition for this is

νγ = νγ,L + νγ,R + 1
2 (1 − σγ ) σγ = sign

(
(Lγ )12(Rγ )12

(Mγ )12

)
. (21)

The single- and double-diffractive orbits have multiplicity 2β−1 and 8β−2, respectively,
but each configuration occurs for 2β−1 different values of ε. Therefore, the total multiplicity
is g = 8β−2. The contribution to the form factor from all pairs of orbits is thus given by

K
(2a)
off (τ ) = g

2πh̄d̄(E)
2 Re

∫ ∞

−∞
dε
∑
γ

(ε)
A2do
γ (A1do

γ )∗ exp

(
− i

h̄
�Sγ (E)

)
δ(T − Tγ )

= 16

2πh̄d̄(E)β2
Re
∫ ∞

−∞
dε
∑
γ

(ε) h̄T 2
γ D2D∗√2πh̄δ(T − Tγ )

64π2p3
v

√|(Lγ )12(Rγ )12(Mγ )12|

× exp

{
iε2p2

v

2h̄

(Lγ )12(Rγ )12

(Mγ )12
− i

π

4
(2 + σγ )

}
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= 1

2πh̄d̄(E)β2
Re
∑
γ

(ε′) h̄2T 2D2D∗δ(T − Tγ )

2πp4
v |(Lγ )12(Rγ )12| e−i π2

= τ 3

β2
Im(D2D∗). (22)

Here we have slightly abbreviated the procedure of (14) and performed the integration
directly.

4.2. Correlations between double-diffractive orbits and periodic orbits

In order for a double-diffractive orbit to be close to a periodic orbit it has to be almost periodic.
This means that the final direction of each loop has to be almost identical to the initial direction
of the other loop, so there are two small relative angles as shown in figure 4.

Figure 4. A double-diffractive orbit (full curve) for
which the two initial directions deviate by small angles
ε1 and ε2 from the two final directions, and a nearby
periodic orbit (broken curve).

The linearization of the motion in the vicinity of the double-diffractive orbit leads to the
following condition for the periodic orbit:(

δ2

pvγ2

)
= L

(
δ1

pv(γ1 − ε1)

) (
δ1

pvγ1

)
= R

(
δ2

pv(γ2 − ε2)

)
. (23)

The angles γi and distances δi are defined analogously as before in terms of the local coordinate
systems that are oriented along the two final directions of the diffractive orbit.

The difference in actions is given by

�S(E) = Spo(E) − S2do(E)

= − 1
2pv(δ1ε1 + δ2ε2)

= − 1
2p

2
v

(RL)12ε
2
1 + (LR)12ε

2
2 + 2(L12 + R12)ε1ε2

Tr M − 2
(24)

where M = RL is the stability matrix for the periodic orbit. Equation (24) can be written
in terms of a symmetric matrix A such that �S(E) = − 1

2p
2
v

∑
i,j Aij εiεj . The number of

negative eigenvalues of A is given by the number of sign changes in the sequence of sub-
determinants (1, A11, det A). With A11 = M12/(Tr M − 2) and det A = L12R12/(Tr M − 2)
one finds that the two signs of the eigenvalues are given by

κ = sign

(
M12

Tr M − 2

)
σ = sign

(
L12R12

M12

)
. (25)

The Maslov index of the periodic orbit can now differ by zero, one or two from the sum
of conjugate points along the left and right loop. The criterion for this is the combination of
(12) and (21) and has the form

µ = νL + νR + 1
2 (2 − κ − σ) (26)
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Figure 5. A double-diffractive orbit (dotted curve)
for which the two initial directions deviate by small
angles ε1 and ε2 from the two final directions, and
two nearby single-diffractive orbits (full and broken
curves).

where κ and σ are given in (25).
The multiplicities of double-diffractive and periodic orbits are 8β−2 and 2β−1,

respectively, but a particular configuration of them occurs 4β−1 times in the integral over
the angles (for example, for systems without time-reversal symmetry the two angles can be
interchanged), so the total multiplicity is g = 4β−2.

After inserting the amplitudes (17) and (11) and the action difference (24) into (3) we
obtain

K
(2b)
off (τ ) = g

2πh̄d̄(E)
2 Re

∫ ∞

−∞
dε1 dε2

∑
γ

(ε1,ε2)
A2do
γ (Apo

γ )
∗ exp

(
− i

h̄
�Sγ (E)

)
δ(T − Tγ )

= 8

2πh̄d̄(E)β2
Re
∫ ∞

−∞
dε1 dε2

∑
γ

(ε1,ε2) h̄T
2
γ D2δ(T − Tγ )e

ip2
v

2h̄

∑
Ai,j εi εj−i π4 (4+σγ +κγ )

16πp2
v

√|(Lγ )12(Rγ )12(Tr Mγ − 2)|

= 1

2πh̄d̄(E)β2
Re
∑
γ

(ε′
1,ε

′
2) h̄

2T 2D2δ(T − Tγ )

p4
v |(Lγ )12(Rγ )12| e−iπ

= − τ 3

β2
Re(D2). (27)

4.3. Correlations between pairs of single-diffractive orbits

For exactly the same kind of double-diffractive orbits as in the last section, there is one further
type of correlation that has to be considered. It occurs because there are two possible ways in
which the double-diffractive orbit can be deformed into a nearby single-diffractive orbit, and
consequently, there are correlations between these single-diffractive orbits.

The action difference between the two orbits can be obtained from the action difference
between each of these orbits and the double-diffractive orbit (20)

�S(E) = S1do,1(E) − S1do,2(E) = − 1
2δ1ε1pv + 1

2δ2ε2pv = − 1
2p

2
v

(
L12R12

N12
ε2

1 − L12R12

M12
ε2

2

)
(28)

where M = RL and N = LR are the stability matrices of the two single-diffractive orbits.
The number of conjugate points along the orbits are given by

ν1 = νL + νR + 1
2 (1 − σ1) ν2 = νL + νR + 1

2 (1 − σ2)

σ1 = sign

(
L12R12

N12

)
, σ2 = sign

(
L12R12

M12

)
. (29)

The multiplicities of the two orbits is both 2β−1 and, as before, the configuration occurs
4β−1 times in the double integral over the angles, so the total multiplicity is g = β−1.
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Figure 6. A double-diffractive orbit (dotted curve)
with one loop for which the initial direction and the
reversed final direction deviate by small angles ε1
and ε2 from the final direction of the other loop.
Furthermore, two nearby single-diffractive orbits (full
and broken curves), one of which traverses the second
loop in the opposite direction (full curve).

Inserting the amplitude (10) with stability matrix M and N , respectively, and the action
difference (28) into (3) one obtains

K
(2c)
off (τ ) = g

2πh̄d̄(E)
2 Re

∫ ∞

−∞
dε1 dε2

∑
γ

(ε1,ε2)
A1do,2
γ (A1do,1

γ )∗ exp

(
− i

h̄
�Sγ (E)

)
δ(T − Tγ )

= 2

2πh̄d̄(E)β
Re
∫ ∞

−∞
dε1 dε2

×
∑
γ

(ε1,ε2) 2πh̄T 2
γ |D|2δ(T − Tγ )e− i

h̄
�Sγ (E)−i π4 (σγ,1−σγ,2)

16π2p2
v

√|(Mγ )12(Nγ )12|

= 1

2πh̄d̄(E)β
Re
∑
γ

(ε′
1,ε

′
2) h̄

2T 2|D|2δ(T − Tγ )

2p4
v |(Lγ )12(Rγ )12|

= τ 3

2β
|D|2. (30)

The contributions K(2a)
off (τ ), K(2b)

off (τ ) and K(2c)
off (τ ) are the only second-order off-diagonal

corrections in systems without time-reversal symmetry. As will be shown in the following,
these contributions cancel exactly the diagonal term K

(2)
d (τ ) for β = 2. For systems with

time-reversal symmetry there are further contributions. They arise from the possibility that
one trajectory can follow one loop of another trajectory in the same direction, but the other loop
in the time-reversed direction. We assume in the following that the relevant contributions come
from orbits which are close to double-diffractive orbits in coordinate space and we evaluate
their contributions in the next two subsections.

4.4. Correlations between pairs of single-diffractive orbits involving time-reversed loops

The first possibility involves two single-diffractive orbits. These orbits follow closely a double-
diffractive orbit and traverse one loop in the same direction and the other loop in the opposite
direction. In order that this can occur there must be one loop which has a very small opening
angle, and it must be almost aligned to the final direction of the other loop as shown in figure 6.

The action difference and the indices are given by equations (28) and (29) but now with
M = RL and N = RiL, where Ri is the stability matrix for the time-reversed second loop.
In term of the elements of R the matrix Ri is given by

Ri =
(

R22 R12

R21 R11

)
. (31)

The multiplicity of each orbit is two, and the configuration occurs two times in the integral
over the angles, so the total multiplicity is g = 2. Inserting the amplitude (10) with stability
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Figure 7. A double-diffractive orbit (dotted curve)
for which all initial and final directions lie almost
in one line. Furthermore, a nearby periodic orbit
(broken curve), and a nearby single-diffractive
orbit (full curve) which traverses the second loop
in the opposite direction.

matrix M and N , respectively, and the action difference (28) into (3) results in

K
(2d)
off (τ ) = g

2πh̄d̄(E)
2 Re

∫ ∞

−∞
dε1 dε2

∑
γ

(ε1,ε2)
A1do,2
γ (A1do,1

γ )∗

× exp

(
− i

h̄
�Sγ (E)

)
δ(T − Tγ )

= 4

2πh̄d̄(E)
Re
∫ ∞

−∞
dε1 dε2

×
∑
γ

(ε1,ε2) 2πh̄T 2
γ |D|2δ(T − Tγ )e− i

h̄
�Sγ (E)−i π4 (σγ,1−σγ,2)

16π2p2
v

√|(Mγ )12(Nγ )12|

= 1

2πh̄d̄(E)
Re
∑
γ

(ε′
1,ε

′
2) h̄

2T 2|D|2δ(T − Tγ )

p4
v |(Lγ )12(Rγ )12|

= τ 3|D|2. (32)

4.5. Correlations between single-diffractive orbits and periodic orbits involving
time-reversed loops

The last relevant configuration occurs if all initial and final velocities of the double-diffractive
orbit lie almost in one line as in figure 7. Then there exist neighbouring single-diffractive and
periodic orbits which follow one loop in the same direction and the other loop in the opposite
direction.

The action difference between the periodic orbit and the diffractive orbit is obtained from
(20) and (24),

�S(E) = Spo(E) − S1do(E)

= −pv

2
(δ1ε1 + δ2ε2) +

pv

2
δ3ε3

= −p2
v

2

(RL)12ε
2
1 + (LR)12ε

2
2 + 2(L12 + R12)ε1ε2

Tr M − 2
+

1

2
ε2

3p
2
v

L12R12

N12
(33)

where M = RL and N = RiL are the stability matrices of the periodic and diffractive orbit,
respectively, and the indices ν and µ of the diffractive and the periodic orbit are

ν = νL + νR + 1
2 (1 − σ2) µ = νL + νR + 1

2 (2 − κ − σ1)

σ2 = sign

(
L12R12

N12

)
κ = sign

(
M12

Tr M − 2

)
σ1 = sign

(
L12R12

M12

)
.

(34)

For each double-diffractive orbit like that in figure 7 there are two periodic orbits of
multiplicity two and four single-diffractive orbits of multiplicity two in the vicinity, but only
half of the possible pairs involve exactly one time-reversed loop which makes a total of 16.
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Furthermore, the double-diffractive orbit occurs eight times in the integral over the angles and
the total multiplicity is thus g = 2.

Inserting the amplitudes (10) and (11) and the action difference (33) into (3) yields

K
(2e)
off (τ ) = g

2πh̄d̄(E)
2 Re

∫ ∞

−∞
dε1 dε2 dε3

∑
γ

(ε1,ε2,ε3)
A1do
γ (Apo

γ )
∗

× exp

(
− i

h̄
�Sγ (E)

)
δ(T − Tγ )

= 4

2πh̄d̄(E)
Re
∫ ∞

−∞
dε1 dε2 dε3

×
∑
γ

(ε1,ε2,ε3) T
2
γ D

√
2πh̄δ(T − Tγ )e− i

h̄
�Sγ (E)−i π4 (2−σγ,2+κγ +σγ,1)

4πpv

√|(Mγ )12(Tr Mγ − 2)|

= 1

2πh̄d̄(E)
Re
∑
γ

(ε′
1,ε

′
2,ε

′
3) 4πh̄2T 2Dδ(T − Tγ )

p4
v |(Lγ )12(Rγ )12| e−i π2

= 2τ 3 Im D. (35)

The sum of all contributions can be written in the form

K(2)(τ ) = K
(2)
d (τ ) + K

(2a)
off (τ ) + K

(2b)
off (τ ) + K

(2c)
off (τ ) + K

(2d)
off (τ ) + K

(2e)
off (τ )

= τ 3

β2

(
1

8
|D|4 + |D|2 Im D − Re D2 +

β

2
|D|2 + (2 − β)|D|2 + 2(2 − β) Im D

)

= τ 3

β2

(
1

8
|D|4 + |D|2 Im D − Re D2 + |D|2

)
= 0 (36)

which can be seen by using (6). This shows that off-diagonal terms also cancel the diagonal
term in this order. It implies that the form factor is determined by periodic orbits alone, because
the different terms which involve diffractive orbits cancel each other. This might be true also
for other point-like sources of diffraction such as, for example, Aharonov–Bohm flux lines
(see [17]), although a quantitative analysis would require the use of uniform approximations
here.

5. Universality in parametric correlations

The cancellation of off-diagonal and diagonal terms conforms with the expected universality
of spectral statistics in chaotic systems. Universality is, however, not only expected in the
properties of single systems, but also in the way in which system properties vary when a
parameter of the system is changed. For example, random matrix theory makes predictions
about correlations between densities of states for different parameter values. The semiclassical
calculation of diagonal and off-diagonal terms allows us to test this prediction for systems with
a point-like scatterer where the parameter is the strength of the scatterer.

In analogy to the spectral form factor, a parametric form factor can be defined as the
Fourier transform of the parametric two-point correlation function,

K(τ, x) =
∫ ∞

−∞

dη

d̄(E)

〈
dosc

(
E +

η

2
, X +

x

2

)
dosc

(
E − η

2
, X − x

2

)〉
E

exp
(
2π iητ d̄(E)

)
.

(37)
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Here x is the parameter difference between two systems. In order for this statistics to be
universal the parameter has to be chosen in a particular way. The requirement is that the
variance of the velocities, the derivatives of the unfolded energies with respect to the parameter
(∂εn/∂x), is equal to unity. The unfolded energies are obtained from the quantum energies of
the system by a scaling that leads to mean level distance of one.

For random matrix ensembles, the parametric two-point correlation function was derived
in [18] in the context of disordered metallic systems. For the GUE result, which we discuss
first, the Fourier transform in (37) can be evaluated in closed form. It results in

KGUE(τ, x) =




sinh(2π2x2τ 2)

2π2x2τ
exp(−2π2x2τ) if τ < 1

sinh(2π2x2τ)

2π2x2τ
exp(−2π2x2τ 2) if τ > 1

(38)

and has for small values of τ the expansion

KGUE(τ, x) = τ − 2π2x2τ 2 + 2π4x4τ 3 + · · · . (39)

We examine in the following whether the perturbation by a point-like scatterer leads to
universal correlations. For large parameter differences x the parametric correlations for these
systems cannot be expected to be universal. The treatment of a delta-scatterer by the method
of self-adjoint extensions leads to a quantization condition with the property that there is
exactly one eigenvalue of the perturbed system within each pair of neighbouring eigenvalues
of the unperturbed system. This puts a restriction on the movement of eigenvalues when the
parameter is changed. For this reason, one can expect universal properties only for small
parameter differences.

We choose first a in (5) as a parameter of the system then the two densities in (37) differ
only in the diffraction coefficient D. Consequently, the results for the parametric form factor
can be obtained directly from the spectral form factor without further calculations. One has to
express the contributions to the form factor, (16) and (36), in terms of D1 and D∗

1 and replace
D∗

1 by D∗
2 . For β = 2 one obtains in this way

K̃sc(τ, x) − K̃sc(τ, 0) ≈ τ 2

4

[D1D∗
2 − 2iD1 + 2iD∗

2

]

+
τ 3

32

[
(D1D∗

2)
2 − 4iD1D∗

2(D1 − D∗
2) − 4D1D1 − 4D∗

2D∗
2 + 8D1D∗

2

]

= τ 2

4

[D1D∗
2 − 2iD1 + 2iD∗

2

]
+
τ 3

32

[D1D∗
2 − 2iD1 + 2iD∗

2

]2
. (40)

A first point to note is that the parametric form factor in (40) is, in general, not real. This
seems to be in contrast with the random matrix result (38) which is real. The reason for this
lies, however, in the correct choice of the unfolding procedure. The definition (37) yields only
the universal form factor in the case where the mean density of states d̄(E) does not depend on
the parameter of the system. However, in the present case the mean density changes slightly
with the parameter x of the system, and this leads to a slight shift of the spectrum with x [19].
Consequently, the argument η of the two-level correlation function is shifted, and its Fourier
transform, the form factor, is multiplied by a term of the form eicτ , where c is determined by
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the shift of the levels. By rewriting (40) up to the considered order in τ in the form

K̃sc(τ, x) − K̃sc(τ, 0) ≈
(
τ +

τ 2

4
Re
[D1D∗

2 − 2iD1 + 2iD∗
2

]

+
τ 3

32

(
Re
[D1D∗

2 − 2iD1 + 2iD∗
2

] )2
)

exp

(
iτ

4
Im
[D1D∗

2 − 2iD1 + 2iD∗
2

])− τ

(41)

one can extract the result that corresponds to a proper unfolding by dropping the exponential,
and one obtains

Ksc(τ, x) − Ksc(τ, 0) ≈ τ 2

4
Re
[D1D∗

2 − 2iD1 + 2iD∗
2

]
+
τ 3

32

(
Re
[D1D∗

2 − 2iD1 + 2iD∗
2

])2

= − τ 2

8
|D1 − D2|2 +

τ 3

128
|D1 − D2|4 (42)

where (6) has been used.
A comparison with (39) shows that it now has the same form as the random matrix result.

The remaining step is to connect the parameter a with the universal parameter x. Since we
consider small parameter differences, x is given by x = �aσv , where σv is the square root
of the variance of the velocities with respect to the parameter a. In order to evaluate σv we
employ a semiclassical method [20–22] which expresses it in the form

σ 2
v =

〈(
∂εn

∂a

)2〉
E

= 〈
lim
η→0

2πη
[
dηv (ε)

]2 〉
E

(43)

where dηv is a Lorentzian smoothed density of states, that is weighted by the velocities and
expressed semiclassically by

dηv (ε) =
∑
n

∂εn

∂a

1

π

η

(ε − εn)2 + η2
≈ Im

∂

∂a

∑
γ

Aγ

πTγ
exp

{
i

h̄
Sγ − ηTγ

h̄d̄(E)

}
. (44)

Here η is the width of the Lorentzian and all other quantities are defined as before.
For small parameter differences we can express the derivative of the diffraction coefficient

with respect to a by (D2 − D1)/�a. After inserting (44) into (43) the leading-order
contribution comes from single-diffractive orbits, and we evaluate the double sum in the
diagonal approximation with the sum rule (13) and amplitudes (10)

σ 2
v = lim

η→0

∫ ∞

0
dT

∑
γ

ηh̄δ(T − Tγ )

4π2p2
vβ|M12|

|D2 − D1|2
(�a)2

exp

{
− 2ηTγ
h̄d̄(E)

}

= lim
η→0

∫ ∞

0
dT

ηh̄

β�(E)

|D2 − D1|2
(�a)2

exp

{
− 2ηT

h̄d̄(E)

}

= 2

β

|D2 − D1|2
(4π�a)2

. (45)

For β = 2, the universal parameter is given by x = �aσv = |D2 − D1|/(4π), and after
insertion into (42) we reproduce the random matrix result (39)

Ksc(τ, x) − Ksc(τ, 0) ≈ −2π2x2τ 2 + 2π4x4τ 3. (46)

For the GOE ensemble, the parametric density correlation function is given by a triple
integral which cannot be expressed in closed form [18]. We consider here only the first-order
correction for which the GOE result can be obtained from the asymptotic form of the correlation
function for long-range correlations in [3, 23]: KGOE(τ, x)−KGOE(τ, 0) ≈ −2π2x2τ 2. Again
we find an agreement with the semiclassical resultKsc(τ, x)−Ksc(τ, 0) ≈ −τ 2|D1−D2|2/4 =
−2π2x2τ 2.
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6. Discussion

We have investigated in this paper the influence of a point-like scatterer on the spectral
statistics of quantum systems with a chaotic classical limit. It has been shown that the
modification of the form factor K(τ) due to the scatterer can be evaluated systematically in a
semiclassical approximation. The expansion of the form factor in powers of τ corresponds on
the semiclassical side to an expansion in the number of loops of the diffractive orbits. We have
calculated off-diagonal contributions to the τ 2 and τ 3 terms, but the method can be extended
to higher-order terms.

The results lead to the conclusion that the delta-perturbation does not modify the form
factor. Off-diagonal terms from pairs of different diffractive orbits and from pairs of diffractive
and periodic orbits cancel exactly the diagonal terms from diffractive orbits. This requires the
existence of correlations between different orbits. These correlations arise from pairs of orbits
which are very close in coordinate space.

The results provide a support for the random-matrix conjecture. They imply, up to the
considered order, that the statistics of chaotic systems are invariant under the perturbation by a
point-like scatterer as is expected from universality. They also show that correlations between
two energy spectra for different parameter values are universal, provided that the parameter
difference is small. Furthermore, they indicate indirectly that the spectral statistics of the
unperturbed system (and thus also of the perturbed system) are identical with those of random
matrix theory. The reason for this is that independent results on the invariance of spectral
statistics under a delta-perturbation are based on the assumption that the unperturbed energy
levels and wavefunctions have random matrix distributions [24, 25]. Since the semiclassical
results show this invariance for chaotic systems, the combination of both results provides a
theoretical indication that chaotic systems follow the random matrix hypothesis.

Finally, the results are a support for the semiclassical method. They show that semiclassical
approximations are capable going beyond the leading term in τ and are an appropriate tool for
investigating spectral statistics in the semiclassical limit.
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Appendix. Stability matrix for the motion in a magnetic field

The stability matrix M̃ of a trajectory determines infinitesimal orthogonal deviations from the
final point of the trajectory in terms of the deviations from the initial point of the trajectory(

drf

dpf

)
= M̃

(
dri

dpi

)
. (A1)

In systems with a magnetic field the momentum has the form p = mv + q

c
A(r), where q is the

charge of the particle and A is the vector potential. In this case it is often more convenient to
consider a matrixM that describes deviations of the velocities instead of those of the momenta.
The relation between both matrices is given by(

drf

mdvf

)
= M

(
dri

mdvi

)
M = A−1

f M̃Ai Ai,f =
(

1 0

ai,f 1

)
(A2)
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where ai,f = q

c
(n̂i,f · ∇)(n̂i,f · A(ri,f )), and n̂i,f is the direction orthogonal to the trajectory

at the initial and final point of the trajectory, respectively. The matrix M has unit determinant
and satisfies M12 = M̃12 and Tr M = Tr M̃ +M̃12(ai −af ). In cases where the initial and final
points are identical and the initial and final velocities differ by a small angle ε, the traces are
identical in leading order of ε. Since the semiclassical approximations in this paper involve
only M̃12 and Tr M̃ − 2, we express all quantities in terms of M instead of M̃ , and we also use
the term stability matrix for it.
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[16] Exner P and Šeba P 1996 Point interactions in two and three dimensions as models of small scatterers Phys.

Lett. A 222 1–4
[17] Fishman S and Keating J P 1998 The diagonal approximation for non-time-reversal-symmetric systems J. Phys.

A: Math. Gen. 31 L313–9
[18] Simons B D and Altshuler B L 1993 Universalities in the spectra of disordered and chaotic systems Phys. Rev.

B 48 5422–38
[19] Sieber M 2000 in preparation
[20] Eckhardt B, Fishman S, Keating J, Agam O, Main J and Müller K 1995 Approach to ergodicity in quantum

wave functions Phys. Rev. E 52 5893–903
[21] de Carvalho T O, Keating J P and Robbins J M 1998 Fluctuations in quantum expectation values for chaotic

systems with broken time-reversal symmetry J. Phys. A: Math. Gen. 31 5631–40
[22] Leboeuf P and Sieber M 1999 Universality in quantum parametric correlations Phys. Rev. E 60 3969–72
[23] Ozorio de Almeida A M, Lewenkopf C H and Mucciolo E R 1998 Semiclassical limit of universal parametric

density correlations Phys. Rev. E 58 5693–703
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